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Our Goal

= To develop state-of-the-art methods for
first-principles calculations of the
physical, mechanical, and dynamical
properties of polyatomic molecular
systems, with special emphasis on
condensed-phase energetic materials



Areas of Principal Interest (I)

= Molecular potential-energy functions
= Decomposition rates and mechanisms
= Physical and mechanical properties

= Transport coefficients



Areas of Principal Interest (I1)

= Molecular energization mechanisms

= Fracture/failure of energetic material
crystals

= Grain-grain and grain-binder
Interactions

= Aging effects In energetic materials



Molecular Potential-Energy
Functions

= Fundamental to most molecular
dynamics and Monte Carlo studies

= Potentials largely determine the results

m Several In existence, but of uncertain
applicability to high-explosive systems

= Most often calibrated for “low”
temperatures and pressures



Decomposition Rates and
Mechanisms ()

= Needed for microscopic kinetic
modeling

= Both gas- and condensed-phase
processes of interest

1 gas-phase methods provide useful starting
point

0 major interest lies in methodological
development for condensed phases



Decomposition Rates and
Mechanisms (II)

= Several approaches viable
1 various flavors of transition-state theory
0 classical trajectories
0 molecular dynamics
0 quantum molecular dynamics

0 mixed classical/guantum molecular
dynamics



Physical and Mechanical
Properties (1)

= Needed for higher-level modeling
efforts

0 often used directly in micromechanical
studies

0 indirect application in development of
constitutive relations for continuum
simulations

= Both solids and liquids are of interest



Physical and Mechanical
Properties (l1)

= Data needed over a wide domain of
temperatures, pressures, and strain
rates
0185 K<T<0O(10% K
00 kbar < P <300 kbar
1103 < de/dt < 106



Physical and Mechanical
Properties (lIl)

= Density as f(T,P) N ——

= Lattice parameters .
= Energy as 1(T,P) =
= Specific Heat ST
= AHfusion

melt



Physical and Mechanical
Properties (1V)

= elastic constant matrix as f(T,P)
= derived moduli

= stress-strain behavior

= ultimate strength

= friction coefficients
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Transport Coefficients

= shear viscosity as f(T,P)
= thermal conductivity
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Molecular Energization
Mechanisms ()

= Relevant to microscopic theories of
Initiation
= Dynamics in shocked/strained crystal

= Intra- and intermolecular energy
transfer pathways and rates



Fracture/Failure of Energetic
Material Crystals

= Direct simulation of microscopic crack
propagation
= Energy dissemination at crack tip

= Fallure mechanism (strain-rate
dependence?)



Grain-Grain and Grain-Binder
Interactions

= Predominantly non-atomistic
approaches
0 Discrete Element Method (DEM)
0 Fluid-Implicit Particle (FLIP) method

= Heavily reliant on input from atomistic-
level results



Sample FLIP Calculation
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Discrete Element Model

Large Grains: Elastic Bonds
Small Grains: Intact

Crack-degraded bond

Viscolastic Bonds: Between grains



Aging Effects in Energetic
Materials (I)

= Safety, reliability, and performance

= Areas of potential concern

0 chemical degradation of explosive
molecules

0 changes In binder materials
0 dewetting of HE crystallites



Aging Effects Iin Energetic
Materials (1)

= Effects of HE decomposition on
surrounding materials

= Effects of binder aging on mechanical
properties and viscoelastic response

= Effects of dewetting on structural
Integrity of the composite



Summary

= Need an improved, science-based
understanding of energetic material
systems

= Computational science Is an important
component of the solution

= ASCI/ASAP provides an attractive
mechanism for approaching the
problem



